This is a viewer only at the moment see the article on how this works.
To update the preview hit Ctrl-Alt-R (or ⌘-Alt-R on Mac) or Enter to refresh. The Save icon lets you save the markdown file to disk
This is a preview from the server running through my markdig pipeline
Tuesday, 18 November 2025
When your tools break themselves, your system should remember why and never repeat the mistake
When *DiSE commits murder.
Note: This is a speculative design for DISE's next evolutionary leap—a self-healing tool ecosystem that tracks lineage, detects bugs, prunes failed branches, and learns from mistakes forever. It's ambitious, slightly terrifying, and might actually be implementable with what we already have.
Here's a scenario that keeps me up at night:
Tool: data_validator_v2.3.0
Status: Working perfectly ✓
Evolution triggered: "Optimize for speed"
↓
Tool: data_validator_v2.4.0
Status: 40% faster! ✓
Side effect: Now accepts invalid emails ✗
Applications using v2.4.0: 47
Bugs introduced: 47
Developer frustration: ∞
The current DISE system can evolve tools to be better. But what happens when evolution makes them worse? What if an optimization introduces a critical bug? What if a tool mutation breaks production systems?
Right now, we detect the failure, maybe escalate, maybe fix it manually.
But we don't learn from it in a deep, structural way.
We don't:
In essence we don't create a vaccine with an associated detection system and corpus of research into a fix. But DiSE allows us to do this almost trivially.
That changes today.
Well, conceptually. This is the design for how it could work.
Think of every tool in DISE as a node in a Git-like Directed Acyclic Graph (DAG):
graph TD
A[validator_v1.0.0<br/>Initial implementation] --> B[validator_v1.1.0<br/>Added regex patterns]
A --> C[validator_v1.0.1<br/>Bug fix: null handling]
B --> D[validator_v2.0.0<br/>Rewrote for performance]
C --> D
D --> E[validator_v2.1.0<br/>Added email validation]
E --> F[validator_v2.2.0<br/>💥 BUG: Accepts invalid emails]
F -.-> |Detected failure| G[validator_v2.2.1<br/>Auto-regenerated from v2.1.0]
style F stroke:#c92a2a,stroke-width:3px
style G stroke:#2f9e44,stroke-width:3px
Every tool knows:
When a critical bug is detected, the system:
The result: A self-healing ecosystem where bugs become permanent institutional memory.
First, we need to track way more than we currently do. Here's what the enhanced metadata looks like:
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Set
from datetime import datetime
from enum import Enum
class NodeHealth(Enum):
HEALTHY = "healthy"
DEGRADED = "degraded"
FAILED = "failed"
PRUNED = "pruned"
REGENERATED = "regenerated"
class MutationType(Enum):
OPTIMIZATION = "optimization"
BUG_FIX = "bug_fix"
FEATURE_ADD = "feature_add"
REFACTOR = "refactor"
SECURITY_PATCH = "security"
@dataclass
class MutationRecord:
"""Record of what changed in this evolution"""
mutation_type: MutationType
description: str
timestamp: datetime
fitness_before: float
fitness_after: float
code_diff_hash: str
prompt_used: str
@dataclass
class FailureRecord:
"""Record of a bug or failure"""
failure_type: str
description: str
stack_trace: Optional[str]
test_case_failed: Optional[str]
detection_method: str # "test", "runtime", "static_analysis"
timestamp: datetime
severity: str # "critical", "high", "medium", "low"
@dataclass
class AvoidanceRule:
"""Rules about what NOT to do (learned from failures)"""
rule_id: str
description: str
pattern_to_avoid: str # Regex or semantic description
reason: str # Why this is bad
source_failure: str # Which node failure created this rule
propagation_scope: str # "descendants", "all_similar", "global"
created_at: datetime
@dataclass
class ToolLineage:
"""Complete lineage and health tracking for a tool"""
# Identity
tool_id: str
version: str
full_name: str # e.g., "data_validator_v2.2.0"
# Lineage
parent_ids: List[str] = field(default_factory=list)
child_ids: List[str] = field(default_factory=list)
ancestor_path: List[str] = field(default_factory=list) # Path to root
# Health
health_status: NodeHealth = NodeHealth.HEALTHY
failure_count: int = 0
failures: List[FailureRecord] = field(default_factory=list)
# Evolution
mutations: List[MutationRecord] = field(default_factory=list)
generation: int = 0 # Distance from root
# Learning
avoidance_rules: List[AvoidanceRule] = field(default_factory=list)
inherited_rules: Set[str] = field(default_factory=set) # Rule IDs from ancestors
# Performance
fitness_history: List[float] = field(default_factory=list)
execution_count: int = 0
success_rate: float = 1.0
# Metadata
created_at: datetime = field(default_factory=datetime.now)
last_executed: Optional[datetime] = None
pruned_at: Optional[datetime] = None
regenerated_from: Optional[str] = None
This is a lot more data than we currently track. But it's all necessary for true self-healing.
Critical bugs can be detected through multiple channels:
class TestBasedDetection:
"""Detect bugs through test execution"""
async def validate_tool_health(
self,
tool_id: str,
lineage: ToolLineage
) -> Optional[FailureRecord]:
"""Run all tests and detect failures"""
# Load tool and its test suite
tool = await self.tools_manager.load_tool(tool_id)
test_suite = await self.test_discovery.find_tests(tool)
results = await self.test_runner.run_tests(test_suite)
# Check for test failures
if results.failed_count > 0:
critical_failures = [
test for test in results.failures
if test.is_critical # BDD scenarios, core functionality
]
if critical_failures:
return FailureRecord(
failure_type="test_failure",
description=f"{len(critical_failures)} critical tests failed",
test_case_failed=critical_failures[0].name,
stack_trace=critical_failures[0].stack_trace,
detection_method="test",
timestamp=datetime.now(),
severity="critical"
)
return None
async def regression_detection(
self,
new_version: str,
old_version: str
) -> Optional[FailureRecord]:
"""Detect if new version broke what old version did correctly"""
# Get test results for both versions
old_results = await self.get_cached_test_results(old_version)
new_results = await self.test_runner.run_tests(new_version)
# Find tests that USED to pass but now fail
regressions = [
test for test in old_results.passed
if test.name in [f.name for f in new_results.failures]
]
if regressions:
return FailureRecord(
failure_type="regression",
description=f"Broke {len(regressions)} previously working tests",
test_case_failed=regressions[0].name,
detection_method="regression_test",
timestamp=datetime.now(),
severity="critical"
)
return None
class RuntimeMonitoring:
"""Detect bugs through execution monitoring"""
def __init__(self):
self.error_threshold = 0.05 # 5% error rate triggers investigation
self.execution_window = 100 # Last 100 executions
async def monitor_tool_health(
self,
tool_id: str,
lineage: ToolLineage
) -> Optional[FailureRecord]:
"""Monitor runtime behavior for anomalies"""
# Get recent execution history
recent_runs = await self.bugcatcher.get_recent_executions(
tool_id,
limit=self.execution_window
)
if len(recent_runs) < 10:
return None # Not enough data
# Calculate error rate
error_count = sum(1 for run in recent_runs if run.had_error)
error_rate = error_count / len(recent_runs)
if error_rate > self.error_threshold:
# Analyze error patterns
error_types = {}
for run in recent_runs:
if run.had_error:
error_types[run.error_type] = error_types.get(run.error_type, 0) + 1
most_common_error = max(error_types.items(), key=lambda x: x[1])
return FailureRecord(
failure_type="runtime_errors",
description=f"Error rate {error_rate:.1%} exceeds threshold",
stack_trace=recent_runs[-1].stack_trace if recent_runs[-1].had_error else None,
detection_method="runtime",
timestamp=datetime.now(),
severity="high" if error_rate > 0.20 else "medium"
)
# Check for performance degradation
if len(lineage.fitness_history) >= 5:
recent_fitness = lineage.fitness_history[-5:]
avg_recent = sum(recent_fitness) / len(recent_fitness)
historical_fitness = lineage.fitness_history[:-5]
avg_historical = sum(historical_fitness) / len(historical_fitness)
degradation = (avg_historical - avg_recent) / avg_historical
if degradation > 0.30: # 30% performance drop
return FailureRecord(
failure_type="performance_degradation",
description=f"Performance dropped {degradation:.1%}",
detection_method="runtime",
timestamp=datetime.now(),
severity="medium"
)
return None
class StaticAnalysisDetection:
"""Detect potential bugs through static analysis"""
async def analyze_tool_safety(
self,
tool_id: str,
code: str
) -> Optional[FailureRecord]:
"""Run static analysis to find potential bugs"""
# Run pylint, mypy, bandit
static_runner = StaticAnalysisRunner()
results = await static_runner.analyze_code(code)
# Check for critical issues
critical_issues = [
issue for issue in results.issues
if issue.severity in ["error", "critical"]
]
if critical_issues:
return FailureRecord(
failure_type="static_analysis",
description=f"Found {len(critical_issues)} critical static issues",
detection_method="static_analysis",
timestamp=datetime.now(),
severity="high"
)
# Check for security vulnerabilities
security_issues = [
issue for issue in results.issues
if issue.category == "security"
]
if security_issues:
return FailureRecord(
failure_type="security_vulnerability",
description=f"Found {len(security_issues)} security issues",
detection_method="static_analysis",
timestamp=datetime.now(),
severity="critical"
)
return None
Now the magic happens. When a critical bug is detected:
sequenceDiagram
participant Tool as Tool Execution
participant Monitor as Health Monitor
participant Lineage as Lineage Tracker
participant Pruner as Branch Pruner
participant Generator as Auto-Regenerator
participant RAG as RAG Memory
Tool->>Monitor: Execute tool_v2.2.0
Monitor->>Monitor: Detect critical failure
Monitor->>Lineage: Report failure for tool_v2.2.0
Lineage->>Lineage: Identify failure point in DAG
Lineage->>Pruner: Trigger pruning for failed branch
Pruner->>Pruner: Mark v2.2.0 as PRUNED
Pruner->>Pruner: Mark descendants as TAINTED
Pruner->>Pruner: Extract mutation that caused bug
Pruner->>Lineage: Create avoidance rule
Lineage->>Lineage: Propagate rule to all descendants
Pruner->>Generator: Request regeneration from v2.1.0
Generator->>RAG: Load v2.1.0 as base
Generator->>Generator: Generate v2.2.1 avoiding known bug
Generator->>Monitor: Test v2.2.1
Monitor->>Monitor: All tests pass ✓
Generator->>Lineage: Register v2.2.1 as recovery
Lineage->>RAG: Update canonical version
RAG->>Tool: Route requests to v2.2.1
Here's the implementation:
class SelfHealingOrchestrator:
"""Orchestrates the complete self-healing loop"""
def __init__(
self,
tools_manager: ToolsManager,
lineage_tracker: LineageTracker,
health_monitor: HealthMonitor,
rag_memory: QdrantRAGMemory
):
self.tools_manager = tools_manager
self.lineage_tracker = lineage_tracker
self.health_monitor = health_monitor
self.rag_memory = rag_memory
self.pruner = BranchPruner(lineage_tracker)
self.regenerator = AutoRegenerator(tools_manager, rag_memory)
async def handle_failure(
self,
tool_id: str,
failure: FailureRecord
) -> Optional[str]:
"""
Complete self-healing cycle:
1. Detect failure (already done, passed in)
2. Prune failed branch
3. Create avoidance rules
4. Regenerate from last known-good
5. Validate recovery
6. Update routing
"""
logger.critical(f"Self-healing triggered for {tool_id}: {failure.description}")
# Step 1: Get lineage information
lineage = await self.lineage_tracker.get_lineage(tool_id)
# Step 2: Mark failure in lineage
lineage.health_status = NodeHealth.FAILED
lineage.failures.append(failure)
lineage.failure_count += 1
await self.lineage_tracker.update(lineage)
# Step 3: Identify what went wrong
failure_analysis = await self.analyze_failure(tool_id, failure, lineage)
if not failure_analysis.is_recoverable:
logger.error(f"Failure is not auto-recoverable: {failure_analysis.reason}")
return None
# Step 4: Prune the failed branch
pruning_result = await self.pruner.prune_branch(
failed_node=tool_id,
failure=failure,
lineage=lineage
)
# Step 5: Create avoidance rules
avoidance_rule = await self.create_avoidance_rule(
failure=failure,
analysis=failure_analysis,
pruning_result=pruning_result
)
# Step 6: Propagate avoidance rule to descendants
await self.lineage_tracker.propagate_rule(
rule=avoidance_rule,
scope=avoidance_rule.propagation_scope
)
# Step 7: Find last known-good ancestor
last_good_ancestor = await self.find_last_healthy_ancestor(lineage)
if not last_good_ancestor:
logger.error(f"No healthy ancestor found for {tool_id}")
return None
logger.info(f"Regenerating from {last_good_ancestor}")
# Step 8: Regenerate from healthy ancestor
new_version = await self.regenerator.regenerate_from_ancestor(
ancestor_id=last_good_ancestor,
original_goal=lineage.mutations[-1].description,
avoid_rules=[avoidance_rule]
)
if not new_version:
logger.error("Regeneration failed")
return None
# Step 9: Validate the regenerated version
validation_result = await self.health_monitor.validate_tool(new_version)
if not validation_result.is_healthy:
logger.error(f"Regenerated tool still unhealthy: {validation_result.issues}")
return None
# Step 10: Update lineage to mark recovery
new_lineage = await self.lineage_tracker.get_lineage(new_version)
new_lineage.health_status = NodeHealth.REGENERATED
new_lineage.regenerated_from = last_good_ancestor
new_lineage.inherited_rules.add(avoidance_rule.rule_id)
await self.lineage_tracker.update(new_lineage)
# Step 11: Update RAG routing to prefer new version
await self.rag_memory.mark_as_preferred(new_version)
await self.rag_memory.deprecate_version(tool_id)
logger.success(f"Self-healing complete: {tool_id} → {new_version}")
return new_version
async def analyze_failure(
self,
tool_id: str,
failure: FailureRecord,
lineage: ToolLineage
) -> FailureAnalysis:
"""Use LLM to analyze what went wrong"""
# Get the code for failed and parent versions
failed_code = await self.tools_manager.get_tool_code(tool_id)
if not lineage.parent_ids:
return FailureAnalysis(
is_recoverable=False,
reason="No parent to recover from"
)
parent_id = lineage.parent_ids[0]
parent_code = await self.tools_manager.get_tool_code(parent_id)
# Get the mutation that was applied
last_mutation = lineage.mutations[-1] if lineage.mutations else None
# Ask overseer LLM to analyze
analysis_prompt = f"""
Analyze this tool failure:
FAILED TOOL: {tool_id}
FAILURE: {failure.description}
FAILURE TYPE: {failure.failure_type}
PARENT TOOL: {parent_id}
MUTATION APPLIED: {last_mutation.description if last_mutation else "Unknown"}
CODE DIFF:
{self.generate_diff(parent_code, failed_code)}
STACK TRACE:
{failure.stack_trace or "None"}
Questions:
1. What specific change caused the failure?
2. Was it the mutation itself, or a side effect?
3. Can we regenerate from the parent with a better approach?
4. What should we avoid in future mutations?
Provide a structured analysis.
"""
analysis_result = await self.overseer_llm.analyze(
analysis_prompt,
response_model=FailureAnalysis
)
return analysis_result
async def create_avoidance_rule(
self,
failure: FailureRecord,
analysis: FailureAnalysis,
pruning_result: PruningResult
) -> AvoidanceRule:
"""Create a rule to prevent similar failures"""
# Extract pattern from analysis
pattern = analysis.problematic_pattern
return AvoidanceRule(
rule_id=f"avoid_{uuid.uuid4().hex[:8]}",
description=analysis.rule_description,
pattern_to_avoid=pattern,
reason=failure.description,
source_failure=pruning_result.failed_node_id,
propagation_scope="descendants", # Or "all_similar" for broader impact
created_at=datetime.now()
)
async def find_last_healthy_ancestor(
self,
lineage: ToolLineage
) -> Optional[str]:
"""Walk up the lineage tree to find last healthy node"""
# Start with immediate parents
for parent_id in lineage.parent_ids:
parent_lineage = await self.lineage_tracker.get_lineage(parent_id)
if parent_lineage.health_status == NodeHealth.HEALTHY:
# Verify it still works
validation = await self.health_monitor.validate_tool(parent_id)
if validation.is_healthy:
return parent_id
# If parents are unhealthy, recurse up the tree
for parent_id in lineage.parent_ids:
parent_lineage = await self.lineage_tracker.get_lineage(parent_id)
ancestor = await self.find_last_healthy_ancestor(parent_lineage)
if ancestor:
return ancestor
return None
The pruner marks failed branches and prevents them from being used:
class BranchPruner:
"""Prunes failed branches from the evolutionary tree"""
def __init__(self, lineage_tracker: LineageTracker):
self.lineage_tracker = lineage_tracker
async def prune_branch(
self,
failed_node: str,
failure: FailureRecord,
lineage: ToolLineage
) -> PruningResult:
"""
Prune a failed branch:
1. Mark the failed node as PRUNED
2. Mark all descendants as TAINTED
3. Remove from active routing
4. Preserve for learning (don't delete!)
"""
logger.warning(f"Pruning branch starting at {failed_node}")
# Mark the failed node
lineage.health_status = NodeHealth.PRUNED
lineage.pruned_at = datetime.now()
await self.lineage_tracker.update(lineage)
# Find all descendants
descendants = await self.lineage_tracker.get_all_descendants(failed_node)
pruned_count = 1
tainted_count = 0
# Mark descendants as tainted (they inherit the bug)
for descendant_id in descendants:
descendant = await self.lineage_tracker.get_lineage(descendant_id)
if descendant.health_status == NodeHealth.HEALTHY:
descendant.health_status = NodeHealth.DEGRADED
descendant.inherited_rules.add(f"tainted_by_{failed_node}")
await self.lineage_tracker.update(descendant)
tainted_count += 1
# Remove from RAG active routing
await self.rag_memory.mark_as_inactive(failed_node)
for descendant_id in descendants:
await self.rag_memory.mark_as_inactive(descendant_id)
logger.info(f"Pruned 1 node, tainted {tainted_count} descendants")
return PruningResult(
failed_node_id=failed_node,
pruned_count=pruned_count,
tainted_count=tainted_count,
descendants=descendants,
failure=failure
)
async def can_reuse_tool(
self,
tool_id: str,
context: Dict
) -> Tuple[bool, Optional[str]]:
"""Check if a tool is safe to reuse (not pruned or tainted)"""
lineage = await self.lineage_tracker.get_lineage(tool_id)
if lineage.health_status == NodeHealth.PRUNED:
return False, f"Tool {tool_id} has been pruned due to critical bug"
if lineage.health_status == NodeHealth.FAILED:
return False, f"Tool {tool_id} has known failures"
if lineage.health_status == NodeHealth.DEGRADED:
# Check if degradation is relevant to current context
for rule_id in lineage.inherited_rules:
rule = await self.lineage_tracker.get_rule(rule_id)
if self.rule_applies_to_context(rule, context):
return False, f"Tool is tainted by rule: {rule.description}"
return True, None
When a tool fails, regenerate from a healthy ancestor with avoidance rules:
class AutoRegenerator:
"""Regenerates tools from healthy ancestors with learned constraints"""
def __init__(
self,
tools_manager: ToolsManager,
rag_memory: QdrantRAGMemory
):
self.tools_manager = tools_manager
self.rag_memory = rag_memory
async def regenerate_from_ancestor(
self,
ancestor_id: str,
original_goal: str,
avoid_rules: List[AvoidanceRule]
) -> Optional[str]:
"""
Regenerate a tool from a healthy ancestor, avoiding known pitfalls
"""
# Load ancestor code and metadata
ancestor_tool = await self.tools_manager.load_tool(ancestor_id)
ancestor_code = ancestor_tool.implementation
ancestor_spec = ancestor_tool.specification
# Build avoidance constraints
avoidance_constraints = self.build_avoidance_prompt(avoid_rules)
# Create regeneration spec
regen_spec = f"""
Original Goal: {original_goal}
Base Implementation: {ancestor_id}
{ancestor_code}
CRITICAL CONSTRAINTS - MUST AVOID:
{avoidance_constraints}
Task: Regenerate this tool with the original goal, but strictly avoiding the patterns above.
The previous attempt failed because it violated these constraints.
Approach:
1. Achieve the original goal (performance, features, etc.)
2. Absolutely avoid the prohibited patterns
3. Maintain all existing test compatibility
4. Add safeguards to prevent the specific failure mode
Generate an improved version that achieves the goal safely.
"""
# Use overseer to create careful specification
overseer_result = await self.overseer_llm.plan(
regen_spec,
response_model=ToolSpecification
)
# Generate code with strict validation
generator_result = await self.generator_llm.generate(
specification=overseer_result,
base_code=ancestor_code,
avoid_patterns=[rule.pattern_to_avoid for rule in avoid_rules]
)
if not generator_result.success:
logger.error(f"Regeneration failed: {generator_result.error}")
return None
# Create new version ID
ancestor_version = parse_version(ancestor_id)
new_version = increment_patch(ancestor_version)
new_tool_id = f"{ancestor_tool.name}_{new_version}"
# Register the new tool
await self.tools_manager.register_tool(
tool_id=new_tool_id,
code=generator_result.code,
specification=overseer_result,
metadata={
"regenerated_from": ancestor_id,
"avoidance_rules": [r.rule_id for r in avoid_rules],
"regeneration_reason": "self_healing"
}
)
logger.success(f"Regenerated {new_tool_id} from {ancestor_id}")
return new_tool_id
def build_avoidance_prompt(self, avoid_rules: List[AvoidanceRule]) -> str:
"""Build a clear prompt about what to avoid"""
constraints = []
for i, rule in enumerate(avoid_rules, 1):
constraints.append(f"""
{i}. AVOID: {rule.description}
Pattern: {rule.pattern_to_avoid}
Reason: {rule.reason}
Source: {rule.source_failure}
""")
return "\n".join(constraints)
The killer feature: rules learned from failures propagate through the lineage tree:
class LineageTracker:
"""Tracks tool lineage and propagates learning"""
async def propagate_rule(
self,
rule: AvoidanceRule,
scope: str
):
"""
Propagate an avoidance rule through the lineage tree
Scopes:
- "descendants": Only affect direct descendants of failed node
- "all_similar": Affect all tools in similar semantic space
- "global": Affect all tools (for critical security issues)
"""
if scope == "descendants":
await self._propagate_to_descendants(rule)
elif scope == "all_similar":
await self._propagate_to_similar(rule)
elif scope == "global":
await self._propagate_globally(rule)
async def _propagate_to_descendants(self, rule: AvoidanceRule):
"""Add rule to all descendants of the source failure"""
source_node = rule.source_failure
descendants = await self.get_all_descendants(source_node)
for descendant_id in descendants:
lineage = await self.get_lineage(descendant_id)
lineage.inherited_rules.add(rule.rule_id)
await self.update(lineage)
logger.info(f"Propagated rule {rule.rule_id} to {len(descendants)} descendants")
async def _propagate_to_similar(self, rule: AvoidanceRule):
"""Add rule to semantically similar tools"""
# Find similar tools using RAG
similar_tools = await self.rag_memory.find_similar(
query=rule.description,
filter={"type": "tool"},
top_k=50,
similarity_threshold=0.7
)
for tool_result in similar_tools:
tool_id = tool_result.id
lineage = await self.get_lineage(tool_id)
lineage.inherited_rules.add(rule.rule_id)
await self.update(lineage)
logger.info(f"Propagated rule {rule.rule_id} to {len(similar_tools)} similar tools")
async def _propagate_globally(self, rule: AvoidanceRule):
"""Add rule to ALL tools (for critical security issues)"""
all_tools = await self.get_all_tools()
for tool_id in all_tools:
lineage = await self.get_lineage(tool_id)
lineage.inherited_rules.add(rule.rule_id)
await self.update(lineage)
logger.warning(f"Propagated GLOBAL rule {rule.rule_id} to {len(all_tools)} tools")
Let's walk through a complete example:
# Initial healthy tool
email_validator_v1_0_0 = """
def validate_email(email: str) -> bool:
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return bool(re.match(pattern, email))
"""
# Tests pass, fitness: 0.85
# Auto-evolution triggers: "Optimize for performance"
# System generates v2.0.0
email_validator_v2_0_0 = """
def validate_email(email: str) -> bool:
# Optimized: skip regex for obvious cases
if '@' not in email:
return False
return True # ⚠️ BUG: Too permissive!
"""
# Tests initially pass (basic tests), fitness: 0.95 (faster!)
# Deployed to production...
# Runtime monitoring detects failures
runtime_errors = [
"Accepted 'user@@domain.com'",
"Accepted '@domain.com'",
"Accepted 'user@'",
]
# Self-healing triggered!
failure = FailureRecord(
failure_type="logic_error",
description="Email validation too permissive, accepts invalid emails",
detection_method="runtime",
severity="critical"
)
# System analyzes failure
analysis = """
The optimization removed the comprehensive regex validation in favor of
a simple '@' check. This makes it fast but incorrect.
Problematic Pattern: "Replacing comprehensive validation with simple substring checks"
Avoidance Rule: "Never replace regex validation with simple string checks without
comprehensive test coverage for edge cases"
"""
# Branch pruning
# - Mark v2.0.0 as PRUNED
# - Createavoidance rule
# - Propagate to all email-related validators
# Auto-regeneration from v1.0.0
email_validator_v2_0_1 = """
def validate_email(email: str) -> bool:
# Optimized: compile regex once
if not hasattr(validate_email, '_pattern'):
validate_email._pattern = re.compile(
r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
)
# Fast path for obvious failures
if '@' not in email or email.count('@') != 1:
return False
# Comprehensive validation (cached pattern)
return bool(validate_email._pattern.match(email))
"""
# Tests pass, fitness: 0.92 (faster AND correct!)
# Deployed, monitored, succeeds!
The system learned:
This knowledge is now permanent institutional memory, propagated to all similar tools.
Here's how the complete system looks:
graph TB
subgraph "Detection Layer"
Tests[Test Suite<br/>BDD, Unit, Integration]
Runtime[Runtime Monitor<br/>Error rates, performance]
Static[Static Analysis<br/>Pylint, mypy, bandit]
end
subgraph "Analysis Layer"
Detect[Failure Detection]
Analyze[LLM Analysis<br/>What went wrong?]
Classify[Severity Classification<br/>Critical/High/Medium/Low]
end
subgraph "Lineage Layer"
DAG[Tool Lineage DAG]
Rules[Avoidance Rules]
History[Failure History]
end
subgraph "Healing Layer"
Prune[Branch Pruner]
Propagate[Rule Propagation]
Regen[Auto-Regenerator]
end
subgraph "Validation Layer"
Validate[Health Validation]
Deploy[Safe Deployment]
Monitor[Continuous Monitoring]
end
Tests --> Detect
Runtime --> Detect
Static --> Detect
Detect --> Analyze
Analyze --> Classify
Classify --> DAG
DAG --> Prune
Prune --> Rules
Rules --> Propagate
Propagate --> DAG
Prune --> Regen
Rules --> Regen
Regen --> Validate
Validate --> Deploy
Deploy --> Monitor
Monitor --> Runtime
style Detect stroke:#c92a2a,stroke-width:3px
style Regen stroke:#2f9e44,stroke-width:3px
style Validate stroke:#1971c2,stroke-width:3px
The beautiful part: this builds on what we already have:
class EnhancedToolsManager(ToolsManager):
"""Extended ToolsManager with self-healing capabilities"""
def __init__(self, config: ConfigManager, *args, **kwargs):
super().__init__(config, *args, **kwargs)
# New components
self.lineage_tracker = LineageTracker(
storage_path="lineage/",
rag_memory=self.rag_memory
)
self.health_monitor = HealthMonitor(
test_runner=self.test_runner,
bugcatcher=self.bugcatcher,
static_runner=self.static_runner
)
self.self_healing = SelfHealingOrchestrator(
tools_manager=self,
lineage_tracker=self.lineage_tracker,
health_monitor=self.health_monitor,
rag_memory=self.rag_memory
)
# Enable continuous health monitoring
self.start_health_monitoring()
async def call_tool(self, tool_id: str, inputs: Dict) -> Any:
"""Override to add health checks and auto-recovery"""
# Check if tool is safe to use
can_use, reason = await self.self_healing.pruner.can_reuse_tool(
tool_id,
context=inputs
)
if not can_use:
# Tool is pruned, find alternative
logger.warning(f"Tool {tool_id} is unsafe: {reason}")
alternative = await self.find_healthy_alternative(tool_id)
if alternative:
logger.info(f"Using alternative: {alternative}")
tool_id = alternative
else:
raise ToolPrunedError(f"{tool_id} is pruned and no alternative exists")
# Execute tool with monitoring
try:
result = await super().call_tool(tool_id, inputs)
# Record successful execution
await self.lineage_tracker.record_success(tool_id)
return result
except Exception as e:
# Record failure
failure = FailureRecord(
failure_type=type(e).__name__,
description=str(e),
stack_trace=traceback.format_exc(),
detection_method="runtime",
timestamp=datetime.now(),
severity="high"
)
await self.lineage_tracker.record_failure(tool_id, failure)
# Check if this triggers self-healing
lineage = await self.lineage_tracker.get_lineage(tool_id)
if lineage.failure_count >= 3: # Three strikes rule
logger.critical(f"Tool {tool_id} reached failure threshold, triggering self-healing")
# Trigger self-healing in background
asyncio.create_task(
self.self_healing.handle_failure(tool_id, failure)
)
raise
async def find_healthy_alternative(self, pruned_tool_id: str) -> Optional[str]:
"""Find a healthy alternative to a pruned tool"""
# Get tool metadata
tool_metadata = await self.rag_memory.get_metadata(pruned_tool_id)
# Search for similar tools
alternatives = await self.rag_memory.find_similar(
query=tool_metadata.description,
filter={
"type": "tool",
"category": tool_metadata.category
},
top_k=10
)
# Find first healthy alternative
for alt in alternatives:
can_use, _ = await self.self_healing.pruner.can_reuse_tool(
alt.id,
context={}
)
if can_use:
return alt.id
return None
def start_health_monitoring(self):
"""Start background health monitoring"""
async def monitor_loop():
while True:
await asyncio.sleep(300) # Every 5 minutes
# Get all active tools
active_tools = await self.get_active_tools()
for tool_id in active_tools:
# Check health
health_result = await self.health_monitor.check_tool_health(tool_id)
if not health_result.is_healthy:
logger.warning(f"Health check failed for {tool_id}: {health_result.issues}")
# Trigger self-healing if critical
if health_result.severity == "critical":
await self.self_healing.handle_failure(
tool_id,
health_result.failure
)
asyncio.create_task(monitor_loop())
Add to your config.yaml:
self_healing:
enabled: true
detection:
test_based: true
runtime_monitoring: true
static_analysis: true
thresholds:
failure_count_trigger: 3 # Trigger healing after N failures
error_rate_threshold: 0.05 # 5% error rate
performance_degradation: 0.30 # 30% slowdown
pruning:
auto_prune_critical: true
keep_pruned_history: true # Don't delete, learn from it
taint_descendants: true
regeneration:
auto_regenerate: true
max_regeneration_attempts: 3
require_test_validation: true
propagation:
default_scope: "descendants" # or "all_similar" or "global"
critical_failures_global: true # Security issues affect all tools
monitoring:
health_check_interval_seconds: 300 # Every 5 minutes
continuous_monitoring: true
lineage_tracking:
enabled: true
storage_path: "lineage/"
max_history_depth: 100 # How far back to track ancestry
compress_old_lineage: true # Save space for old data
We need persistent storage for lineage data:
-- Tool lineage table
CREATE TABLE tool_lineage (
tool_id VARCHAR(255) PRIMARY KEY,
version VARCHAR(50),
full_name VARCHAR(255),
health_status VARCHAR(50),
failure_count INTEGER DEFAULT 0,
generation INTEGER DEFAULT 0,
execution_count INTEGER DEFAULT 0,
success_rate FLOAT DEFAULT 1.0,
created_at TIMESTAMP,
last_executed TIMESTAMP,
pruned_at TIMESTAMP,
regenerated_from VARCHAR(255)
);
-- Parent-child relationships
CREATE TABLE lineage_relationships (
id SERIAL PRIMARY KEY,
child_id VARCHAR(255),
parent_id VARCHAR(255),
relationship_type VARCHAR(50), -- 'direct', 'merge', 'fork'
created_at TIMESTAMP,
FOREIGN KEY (child_id) REFERENCES tool_lineage(tool_id),
FOREIGN KEY (parent_id) REFERENCES tool_lineage(tool_id)
);
-- Mutation records
CREATE TABLE mutations (
id SERIAL PRIMARY KEY,
tool_id VARCHAR(255),
mutation_type VARCHAR(50),
description TEXT,
prompt_used TEXT,
code_diff_hash VARCHAR(64),
fitness_before FLOAT,
fitness_after FLOAT,
timestamp TIMESTAMP,
FOREIGN KEY (tool_id) REFERENCES tool_lineage(tool_id)
);
-- Failure records
CREATE TABLE failures (
id SERIAL PRIMARY KEY,
tool_id VARCHAR(255),
failure_type VARCHAR(100),
description TEXT,
stack_trace TEXT,
test_case_failed VARCHAR(255),
detection_method VARCHAR(50),
severity VARCHAR(20),
timestamp TIMESTAMP,
FOREIGN KEY (tool_id) REFERENCES tool_lineage(tool_id)
);
-- Avoidance rules
CREATE TABLE avoidance_rules (
rule_id VARCHAR(255) PRIMARY KEY,
description TEXT,
pattern_to_avoid TEXT,
reason TEXT,
source_failure VARCHAR(255),
propagation_scope VARCHAR(50),
created_at TIMESTAMP,
FOREIGN KEY (source_failure) REFERENCES tool_lineage(tool_id)
);
-- Rule inheritance
CREATE TABLE rule_inheritance (
id SERIAL PRIMARY KEY,
tool_id VARCHAR(255),
rule_id VARCHAR(255),
inherited_at TIMESTAMP,
FOREIGN KEY (tool_id) REFERENCES tool_lineage(tool_id),
FOREIGN KEY (rule_id) REFERENCES avoidance_rules(rule_id)
);
-- Fitness history
CREATE TABLE fitness_history (
id SERIAL PRIMARY KEY,
tool_id VARCHAR(255),
fitness_score FLOAT,
execution_time_ms INTEGER,
memory_usage_mb FLOAT,
timestamp TIMESTAMP,
FOREIGN KEY (tool_id) REFERENCES tool_lineage(tool_id)
);
-- Indexes for performance
CREATE INDEX idx_lineage_health ON tool_lineage(health_status);
CREATE INDEX idx_lineage_version ON tool_lineage(version);
CREATE INDEX idx_relationships_child ON lineage_relationships(child_id);
CREATE INDEX idx_relationships_parent ON lineage_relationships(parent_id);
CREATE INDEX idx_failures_tool ON failures(tool_id);
CREATE INDEX idx_failures_severity ON failures(severity);
CREATE INDEX idx_rules_source ON avoidance_rules(source_failure);
CREATE INDEX idx_inheritance_tool ON rule_inheritance(tool_id);
CREATE INDEX idx_fitness_tool ON fitness_history(tool_id);
Add new commands to the CLI:
# View lineage for a tool
$ python chat_cli.py lineage data_validator_v2.2.0
Tool Lineage: data_validator_v2.2.0
Status: ❌ PRUNED (Critical failure detected)
Pruned: 2025-01-22 14:23:15
Ancestry:
├─ data_validator_v1.0.0 (✓ Healthy)
├─ data_validator_v1.1.0 (✓ Healthy)
├─ data_validator_v2.0.0 (✓ Healthy)
├─ data_validator_v2.1.0 (✓ Healthy)
└─ data_validator_v2.2.0 (❌ PRUNED) ← You are here
Failures:
1. [2025-01-22 14:20:01] Logic Error: Email validation too permissive
Severity: Critical
Detection: Runtime monitoring
Mutations Applied:
- [2025-01-22 14:15:00] Optimization: Remove regex for simple @ check
Fitness: 0.85 → 0.95
Avoidance Rules Created:
- avoid_3f8a2c1d: Never replace comprehensive validation with simple checks
Propagated to: 12 descendants, 34 similar tools
Recovery:
✓ Auto-regenerated as data_validator_v2.2.1
New version healthy, monitoring...
# View all pruned tools
$ python chat_cli.py pruned
Pruned Tools:
1. data_validator_v2.2.0 (Critical: Logic error)
2. json_parser_v1.5.3 (High: Performance regression)
3. http_client_v3.1.0 (Critical: Security vulnerability)
# View avoidance rules
$ python chat_cli.py rules
Active Avoidance Rules:
1. avoid_3f8a2c1d [DESCENDANTS]
Never replace comprehensive validation with simple checks
Source: data_validator_v2.2.0
Affects: 46 tools
2. avoid_7b2e9f0a [GLOBAL]
Never use eval() on user input
Source: json_parser_v1.5.3
Affects: ALL tools
3. avoid_1c4d8a6f [ALL_SIMILAR]
Always use connection pooling for HTTP clients
Source: http_client_v3.1.0
Affects: 23 tools
# Manually trigger healing
$ python chat_cli.py heal data_validator_v2.2.0
Initiating self-healing for data_validator_v2.2.0...
✓ Failure analysis complete
✓ Branch pruned
✓ Avoidance rule created: avoid_3f8a2c1d
✓ Rule propagated to 46 tools
✓ Regenerated from data_validator_v2.1.0
✓ Validation passed
✓ Deployed as data_validator_v2.2.1
Self-healing complete! New version: data_validator_v2.2.1
# View health report
$ python chat_cli.py health
System Health Report:
Total Tools: 237
Healthy: 229 (96.6%)
Degraded: 5 (2.1%)
Failed: 2 (0.8%)
Pruned: 1 (0.4%)
Recent Failures:
- data_validator_v2.2.0 (Auto-healed ✓)
- api_client_v1.3.2 (Monitoring...)
Auto-Healing Stats:
Total healing events: 8
Successful recoveries: 7 (87.5%)
Failed recoveries: 1 (12.5%)
Avg recovery time: 45 seconds
Let's be honest about what's real vs. aspirational:
This system, if fully implemented, creates something unsettling:
Tools that remember every mistake ever made and ensure they never repeat it.
Not just individually. Collectively.
A bug in one tool propagates as knowledge to every similar tool. A security vulnerability discovered anywhere becomes a global constraint everywhere.
The system develops institutional memory.
And here's the thing: institutional memory compound exponentially.
Each generation is constrained by all previous mistakes.
This is either:
If we were to actually build this, here's the order:
Total: ~9 weeks of focused development
Self-healing through lineage-aware pruning isn't just a feature. It's a fundamental shift in how we think about code generation.
Traditional systems:
Generate → Test → Use → Fail → Regenerate → Repeat forever
Self-healing systems:
Generate → Test → Use → Fail → Learn → Prevent → Heal → Never repeat
The difference is memory.
Not just memory of what worked. Memory of what failed and why.
And that memory propagates. Through descendants. Through similar tools. Through the entire ecosystem.
The system develops antibodies.
Once a bug is detected, it can never happen again in that form. The pattern is remembered, the avoidance rule is created, the knowledge propagates.
This is how immune systems work.
This is how organizations learn.
This is how civilizations develop.
And now, maybe, this is how code can evolve.
This is currently a design document, not a working feature. But if you want to help build it:
The goal isn't to build a perfect system on day one.
The goal is to build a system that can learn from every mistake and never repeat it.
If we can do that, we've created something genuinely new.
Not just better code generation.
Code that remembers.
Conceptual Foundation:
Key Components to Build:
lineage_tracker.py - Complete DAG storage and queryinghealth_monitor.py - Multi-channel failure detectionbranch_pruner.py - Failed branch managementauto_regenerator.py - Healing from ancestorsavoidance_rules.py - Pattern storage and propagationIntegration Points:
tools_manager.py - Add health checks to tool executionauto_evolver.py - Add avoidance rule constraintsqdrant_rag_memory.py - Store lineage in vector DBtest_discovery.py - Enhanced failure reportingDependencies:
Series Navigation:
This is a design document for DISE's self-healing capabilities. The core mechanisms (lineage, evolution, RAG memory, testing) already exist. This article describes how to combine them into a system where tools learn from failures and never repeat mistakes. It's ambitious. It might be implementable. And if it works, it changes everything about how code evolves.
The uncomfortable parallel: This is how immune systems work. This is how organizations learn. If code can do this at scale... what else becomes possible?
Tags: #Python #AI #CodeGeneration #SelfHealing #Lineage #AutoRecovery #EvolutionaryAlgorithms #DISE #ToolManagement #BugPrevention #InstitutionalMemory
© 2025 Scott Galloway — Unlicense — All content and source code on this site is free to use, copy, modify, and sell.