This is a viewer only at the moment see the article on how this works.
To update the preview hit Ctrl-Alt-R (or ⌘-Alt-R on Mac) or Enter to refresh. The Save icon lets you save the markdown file to disk
This is a preview from the server running through my markdig pipeline
Thursday, 13 November 2025
Hey, ever wonder what you could do if you had your own GPU farm?
Note: Inspired by thinking about extensions to mostlylucid.mockllmapi and material for the sci-fi novel "Michael" about emergent AI
A synthetic decision engine uses multiple LLM backends in sequence to refine, validate, and enhance data through progressive stages. Each LLM brings different strengths—speed, creativity, accuracy, or cost-effectiveness—creating a pipeline where the output of one model becomes refined input for the next.
This pattern is particularly powerful for:
LLMockApi's multi-backend architecture makes this trivially easy to implement.
Here's a complete view of a multi-LLM synthetic decision engine in action:
graph TB
subgraph "Your Application"
A[Application Request<br/>'Generate test data for checkout flow']
end
A --> B{Decision Layer<br/>Which pattern?}
B -->|Simple request| C[Pattern 4:<br/>Route to Fast Model]
B -->|Complex request| D[Pattern 1:<br/>Sequential Pipeline]
B -->|Diverse aspects| E[Pattern 2:<br/>Parallel Processing]
B -->|Quality critical| F[Pattern 3:<br/>Validation Loop]
C --> G[Single Backend]
D --> H[Stage 1: Generate]
H --> I[Stage 2: Enrich]
I --> J[Stage 3: Validate]
E --> K[Backend A]
E --> L[Backend B]
E --> M[Backend C]
K --> N[Merge]
L --> N
M --> N
F --> O[Generate]
O --> P{Quality<br/>Check}
P -->|Pass| Q[Output]
P -->|Fail| R[Correct]
R --> P
G --> S[Final Output]
J --> S
N --> S
Q --> S
subgraph "Backend Pool"
T1[Gemma 3<br/>Fast & Cheap]
T2[Mistral-Nemo<br/>Quality & Context]
T3[GPT-4<br/>Premium Quality]
end
H -.->|Uses| T1
I -.->|Uses| T2
J -.->|Uses| T3
K -.->|Uses| T1
L -.->|Uses| T2
M -.->|Uses| T2
O -.->|Uses| T1
R -.->|Uses| T2
G -.->|Uses| T1
style A stroke:#e1f5ff
style B stroke:#ffe1e1
style S stroke:#e1ffe1
style T1 stroke:#d4edda
style T2 stroke:#fff3cd
style T3 stroke:#f8d7da
What This Diagram Shows:
The Mind-Bending Part: The SAME backend models can be used in DIFFERENT patterns. It's not about having specialized models for each pattern—it's about how you ORCHESTRATE them.
Different LLM models excel at different tasks:
| Model Type | Strength | Use Case in Pipeline |
|---|---|---|
| Local Small Models (Gemma 3, Llama 3) | Fast, cheap, high variety | Initial data generation, bulk processing |
| Local Large Models (Mistral-Nemo) | Quality, context retention | Data refinement, relationship building |
| Cloud Models (GPT-4, Claude) | Superior reasoning, validation | Final quality check, edge case handling |
Stage 1 - Rapid Generation (Gemma 3:4B)
{
"name": "Wireless Mouse",
"price": 29.99,
"category": "Electronics"
}
Stage 2 - Enrichment (Mistral-Nemo)
{
"name": "Wireless Mouse",
"price": 29.99,
"category": "Electronics",
"description": "Ergonomic 2.4GHz wireless mouse with precision tracking",
"specs": {
"dpi": 1600,
"connectivity": "2.4GHz USB receiver",
"battery": "2 AA batteries"
},
"tags": ["wireless", "ergonomic", "office", "productivity"]
}
Stage 3 - Validation & Enhancement (GPT-4)
{
"id": "PROD-WM-2024-1158",
"name": "Wireless Mouse",
"price": 29.99,
"msrp": 39.99,
"category": "Electronics",
"subcategory": "Computer Peripherals",
"description": "Ergonomic 2.4GHz wireless mouse with precision tracking",
"specs": {
"dpi": 1600,
"connectivity": "2.4GHz USB receiver",
"battery": "2 AA batteries",
"dimensions": "4.7 x 2.5 x 1.6 inches",
"weight": "3.2 oz"
},
"tags": ["wireless", "ergonomic", "office", "productivity"],
"inventory": {
"sku": "WM-16-BLK",
"inStock": true,
"quantity": 247,
"warehouse": "US-WEST-1"
},
"shipping": {
"freeShipping": true,
"estimatedDays": 3
}
}
Understanding these patterns is key to building effective multi-LLM systems. Each pattern solves different problems and has distinct trade-offs.
Concept: Data flows through a series of LLMs, where each stage adds more detail, validation, or refinement.
The Mind-Bending Part: The output of one LLM becomes the input to the next. Each model "sees" what the previous one created and builds upon it.
graph LR
A[Raw Input<br/>Just basic requirements] --> B[Fast Model<br/>Gemma 3]
B --> C[Basic Data<br/>Simple structure, fast generation]
C --> D[Quality Model<br/>Mistral-Nemo]
D --> E[Rich Data<br/>Detailed, contextual]
E --> F[Validator Model<br/>GPT-4]
F --> G[Final Output<br/>Production-ready, validated]
style A stroke:#e1f5ff
style C stroke:#fff4e1
style E stroke:#ffe1f5
style G stroke:#e1ffe1
Real Example Flow:
{ "generateUser": true }{ "name": "John", "age": 30 }{ "name": "John", "age": 30, "email": "john@example.com", "address": {...}, "preferences": {...} }When to use:
Best for: Test data generation, mock API responses, data migration
Concept: Multiple LLMs work on the SAME input simultaneously, each specializing in different aspects. Results are merged at the end.
The Mind-Bending Part: Instead of sequential refinement, you're getting different "expert opinions" at the same time, then combining them into a cohesive whole.
graph TD
A[Input Request<br/>Product SKU: WM-123] --> B{Parallel<br/>Dispatch}
B --> C[Model A: Generator<br/>Ollama Gemma3]
B --> D[Model B: Enricher<br/>Ollama Mistral]
B --> E[Model C: Enricher<br/>Ollama Mistral]
C --> F[Product Details<br/>name, description, category]
D --> G[Pricing Data<br/>price, MSRP, discounts]
E --> H[Inventory Info<br/>stock, warehouse, ETA]
F --> I{Merge<br/>Strategy}
G --> I
H --> I
I --> J[Complete Product<br/>All aspects combined]
style A stroke:#e1f5ff
style B stroke:#ffe1e1
style I stroke:#ffe1e1
style J stroke:#e1ffe1
Real Example Flow (All Parallel, ~400ms total):
Request to all three backends simultaneously:
{ "name": "Wireless Mouse", "category": "Electronics" }{ "price": 29.99, "msrp": 39.99, "discount": 25 }{ "inStock": true, "quantity": 247, "warehouse": "US-WEST" }Your code merges them:
const result = {
...productDetails, // from Backend A
pricing: pricingData, // from Backend B
inventory: inventoryInfo // from Backend C
}
When to use:
Best for: Comprehensive data generation, A/B testing, consensus systems
Concept: Generate data with one model, check it with another, and fix issues if found. Repeat until quality threshold met.
The Mind-Bending Part: The validator model acts as a "quality gate" that can send data back for refinement. It's a feedback loop where models collaborate to iteratively improve output.
graph TD
A[Input Request] --> B[Generator Model<br/>Fast, creative]
B --> C[Generated Data]
C --> D[Validator Model<br/>Checks quality]
D --> E{Quality<br/>Check}
E -->|Issues Found| F[Corrector Model<br/>Fix specific issues]
F --> D
E -->|Passes| G[Validated Output]
E -->|Max Attempts<br/>Reached| H[Final Validator<br/>Premium Model<br/>Best effort fix]
H --> G
style A stroke:#e1f5ff
style E stroke:#ffe1e1
style G stroke:#e1ffe1
style H stroke:#fff4e1
Real Example Flow:
Iteration 1:
{ "email": "invalid-email", "age": -5 }{ "email": "user@example.com", "age": 25 }Iteration 2:
When to use:
Best for: Production test data, regulatory compliance testing, schema validation
Concept: Analyze the request first, then route to the appropriate model based on complexity, cost, or requirements.
The Mind-Bending Part: The system "thinks" about which model to use BEFORE processing. It's meta-decision making—deciding how to decide.
graph TD
A[Incoming Request] --> B[Complexity Analyzer]
B --> C{Analyze:<br/>- Field count<br/>- Nesting depth<br/>- Data type<br/>- Budget}
C -->|Simple<br/>Score: 1-3| D[Fast Model<br/>Gemma 3<br/>Cost: $]
C -->|Medium<br/>Score: 4-7| E[Quality Model<br/>Mistral-Nemo<br/>Cost: $$]
C -->|Complex<br/>Score: 8-10| F[Premium Model<br/>GPT-4<br/>Cost: $$$]
D --> G[Output]
E --> G
F --> G
style A stroke:#e1f5ff
style C stroke:#ffe1e1
style D stroke:#e1ffe1
style E stroke:#fff4e1
style F stroke:#ffe1e1
style G stroke:#e1f5ff
Complexity Scoring Example:
function analyzeComplexity(request) {
let score = 0;
// Factor 1: Field count
const fieldCount = Object.keys(request.shape || {}).length;
score += Math.min(fieldCount / 5, 3); // 0-3 points
// Factor 2: Nesting depth
const depth = getMaxDepth(request.shape);
score += Math.min(depth, 3); // 0-3 points
// Factor 3: Array requirements
const hasArrays = JSON.stringify(request.shape).includes('[');
score += hasArrays ? 2 : 0; // 0-2 points
// Factor 4: Custom validation rules
score += (request.validationRules?.length || 0); // 0-N points
return Math.min(score, 10);
}
// Examples:
// { "name": "string" } → Score: 1 → Fast Model
// { "user": { "name": "string", "address": {...}, "orders": [...] } } → Score: 6 → Quality Model
// Complex nested with validation rules → Score: 10 → Premium Model
When to use:
Best for: Production systems, cost-sensitive applications, varied workloads
Use this flowchart to determine which pattern fits your needs:
graph TD
Start[New Requirement] --> Q1{Do stages depend<br/>on previous outputs?}
Q1 -->|Yes| Q2{How many<br/>refinement stages?}
Q1 -->|No| Q3{Multiple<br/>specialized aspects?}
Q2 -->|2-3 stages| Pattern1[✅ Pattern 1:<br/>Sequential Pipeline<br/>Generate → Enrich → Validate]
Q2 -->|Need validation<br/>with corrections| Pattern3[✅ Pattern 3:<br/>Validation Loop<br/>Generate → Check → Fix → Loop]
Q3 -->|Yes| Pattern2[✅ Pattern 2:<br/>Parallel Processing<br/>Split → Process → Merge]
Q3 -->|No| Q4{Varying complexity<br/>across requests?}
Q4 -->|Yes| Pattern4[✅ Pattern 4:<br/>Smart Routing<br/>Analyze → Route to appropriate model]
Q4 -->|No| Simple[✅ Single Backend<br/>No pipeline needed]
style Pattern1 stroke:#d4edda
style Pattern2 stroke:#d4edda
style Pattern3 stroke:#d4edda
style Pattern4 stroke:#d4edda
style Simple stroke:#cce5ff
Decision Examples:
| Your Requirement | Questions to Ask | Recommended Pattern |
|---|---|---|
| "Generate user profiles with addresses, preferences, and order history" | Do I need address before preferences? → YES Multiple stages? → YES |
Pattern 1: Sequential |
| "Generate product with specs, pricing, and inventory" | Does pricing depend on specs? → NO Multiple aspects? → YES |
Pattern 2: Parallel |
| "Generate test data that must pass schema validation" | Need to check and fix? → YES Might need multiple attempts? → YES |
Pattern 3: Validation Loop |
| "Handle mix of simple and complex requests" | Complexity varies? → YES Want to optimize costs? → YES |
Pattern 4: Smart Routing |
| "Generate simple mock responses" | Single aspect? → YES No dependencies? → YES |
Single Backend |
Pro Tip: You can COMBINE patterns! For example:
Configure all backends you'll use in your pipeline:
{
"MockLlmApi": {
"Temperature": 1.2,
"TimeoutSeconds": 60,
"MaxContextWindow": 8192,
"LlmBackends": [
{
"Name": "generator",
"Provider": "ollama",
"BaseUrl": "http://localhost:11434/v1/",
"ModelName": "gemma3:4b",
"MaxTokens": 2048,
"Enabled": true,
"Weight": 1
},
{
"Name": "enricher",
"Provider": "ollama",
"BaseUrl": "http://localhost:11434/v1/",
"ModelName": "mistral-nemo",
"MaxTokens": 4096,
"Enabled": true,
"Weight": 1
},
{
"Name": "validator",
"Provider": "openai",
"BaseUrl": "https://api.openai.com/v1/",
"ModelName": "gpt-4",
"ApiKey": "sk-your-api-key",
"MaxTokens": 4096,
"Enabled": false,
"Weight": 1
}
],
"EnableRetryPolicy": true,
"MaxRetryAttempts": 3,
"EnableCircuitBreaker": true
}
}
Use expensive models sparingly:
{
"MockLlmApi": {
"LlmBackends": [
{
"Name": "bulk-generator",
"Provider": "ollama",
"ModelName": "gemma3:4b",
"Enabled": true,
"Weight": 10
},
{
"Name": "quality-refiner",
"Provider": "ollama",
"ModelName": "mistral-nemo",
"Enabled": true,
"Weight": 3
},
{
"Name": "premium-validator",
"Provider": "openai",
"ModelName": "gpt-4",
"ApiKey": "${OPENAI_API_KEY}",
"Enabled": false,
"Weight": 1
}
]
}
}
Scenario: Generate realistic user profiles with progressive enrichment
Visual Overview:
sequenceDiagram
participant Client
participant API as LLMockApi
participant G as Generator<br/>(Gemma 3)
participant E as Enricher<br/>(Mistral-Nemo)
participant V as Validator<br/>(GPT-4)
Note over Client,V: STAGE 1: Rapid Generation
Client->>API: POST /users/generate<br/>X-LLM-Backend: generator
API->>G: Generate basic user data
G-->>API: {name, email, age}
API-->>Client: Basic user data (100ms)
Note over Client,V: STAGE 2: Enrichment
Client->>API: POST /users/enrich<br/>X-LLM-Backend: enricher<br/>Body: Previous output
API->>E: Add demographics & preferences
E-->>API: {..., demographics, preferences}
API-->>Client: Enriched user data (400ms)
Note over Client,V: STAGE 3: Validation
Client->>API: POST /users/validate<br/>X-LLM-Backend: validator<br/>Body: Previous output
API->>V: Add business context & validate
V-->>API: {..., account, validation, complete}
API-->>Client: Production-ready data (800ms)
Note over Client: Total: ~1.3 seconds<br/>Quality: Premium
What's Happening:
Key Insight: Each request is independent, but the CLIENT orchestrates the pipeline by feeding outputs as inputs.
Generate basic user data quickly:
POST http://localhost:5116/api/mock/users/generate
Content-Type: application/json
X-LLM-Backend: generator
{
"count": 10,
"shape": {
"users": [{
"firstName": "string",
"lastName": "string",
"email": "string",
"age": 0
}]
}
}
Response:
{
"users": [
{
"firstName": "Sarah",
"lastName": "Chen",
"email": "sarah.chen@example.com",
"age": 34
}
]
}
Add demographic and behavioral data:
POST http://localhost:5116/api/mock/users/enrich
Content-Type: application/json
X-LLM-Backend: enricher
{
"users": [
{
"firstName": "Sarah",
"lastName": "Chen",
"email": "sarah.chen@example.com",
"age": 34
}
],
"shape": {
"users": [{
"firstName": "string",
"lastName": "string",
"email": "string",
"age": 0,
"demographics": {
"city": "string",
"state": "string",
"occupation": "string",
"income": 0
},
"preferences": {
"interests": ["string"],
"communicationChannel": "string"
}
}]
}
}
Response:
{
"users": [
{
"firstName": "Sarah",
"lastName": "Chen",
"email": "sarah.chen@example.com",
"age": 34,
"demographics": {
"city": "Seattle",
"state": "WA",
"occupation": "Software Engineer",
"income": 125000
},
"preferences": {
"interests": ["technology", "hiking", "photography"],
"communicationChannel": "email"
}
}
]
}
Add business context and validate consistency:
POST http://localhost:5116/api/mock/users/validate
Content-Type: application/json
X-LLM-Backend: validator
{
"users": [...],
"shape": {
"users": [{
"userId": "string",
"firstName": "string",
"lastName": "string",
"email": "string",
"age": 0,
"demographics": {
"city": "string",
"state": "string",
"zipCode": "string",
"occupation": "string",
"income": 0,
"educationLevel": "string"
},
"preferences": {
"interests": ["string"],
"communicationChannel": "string",
"marketingConsent": true
},
"account": {
"created": "ISO-8601",
"status": "active|inactive|suspended",
"tier": "free|premium|enterprise",
"lastLogin": "ISO-8601"
},
"validation": {
"emailVerified": true,
"phoneVerified": true,
"identityVerified": true
}
}]
}
}
Scenario: Generate comprehensive product catalog by merging parallel specializations
Visual Overview:
sequenceDiagram
participant Client
participant API as LLMockApi
participant G as Generator<br/>(Gemma 3)
participant E1 as Enricher 1<br/>(Mistral-Nemo)
participant E2 as Enricher 2<br/>(Mistral-Nemo)
Note over Client,E2: ALL REQUESTS FIRE SIMULTANEOUSLY
par Product Details Request
Client->>API: POST /products/details<br/>X-LLM-Backend: enricher
API->>E1: Generate specs & description
and Pricing Request
Client->>API: POST /products/pricing<br/>X-LLM-Backend: generator
API->>G: Generate pricing info
and Inventory Request
Client->>API: POST /products/inventory<br/>X-LLM-Backend: generator
API->>E2: Generate stock info
end
par Responses Return
E1-->>API: Product details
API-->>Client: {name, description, specs}
and
G-->>API: Pricing data
API-->>Client: {price, MSRP, discount}
and
E2-->>API: Inventory data
API-->>Client: {inStock, quantity, warehouse}
end
Note over Client: Client merges all three<br/>Total time: ~400ms<br/>(fastest of the three)
Client->>Client: Merge Results<br/>{...details, pricing, inventory}
The Key Difference from Sequential:
Sequential Pipeline (Example 1):
Request 1 → Wait → Response 1 → Request 2 → Wait → Response 2 → Request 3 → Wait → Response 3
Total Time: 100ms + 400ms + 800ms = 1,300ms
Parallel Processing (Example 2):
┌─ Request 1 → Wait → Response 1
├─ Request 2 → Wait → Response 2 (ALL AT ONCE)
└─ Request 3 → Wait → Response 3
Total Time: Max(400ms, 100ms, 400ms) = 400ms
SPEED UP: 3.25x faster!
When Each Pattern Makes Sense:
| Pattern | When to Use | Example |
|---|---|---|
| Sequential | Each stage needs previous output | Generate user → Add address based on user's city → Add preferences based on demographics |
| Parallel | Each aspect is independent | Generate product specs + pricing + inventory (none depend on each other) |
async function generateEnhancedProduct(baseSku) {
// Parallel requests to different backends
const [productDetails, pricing, inventory] = await Promise.all([
// Product specs from quality model
fetch('http://localhost:5116/api/mock/products/details', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'enricher'
},
body: JSON.stringify({
sku: baseSku,
shape: {
name: "string",
description: "string",
specs: {
dimensions: "string",
weight: "string",
material: "string"
}
}
})
}).then(r => r.json()),
// Pricing from fast model
fetch('http://localhost:5116/api/mock/products/pricing', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'generator'
},
body: JSON.stringify({
sku: baseSku,
shape: {
price: 0.0,
msrp: 0.0,
discount: 0,
currency: "USD"
}
})
}).then(r => r.json()),
// Inventory from fast model
fetch('http://localhost:5116/api/mock/products/inventory', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'generator'
},
body: JSON.stringify({
sku: baseSku,
shape: {
inStock: true,
quantity: 0,
warehouse: "string",
nextRestock: "ISO-8601"
}
})
}).then(r => r.json())
]);
// Merge results
return {
sku: baseSku,
...productDetails,
pricing,
inventory,
generated: new Date().toISOString()
};
}
Scenario: Generate data with a fast model, validate with premium model only when needed
async function generateWithQualityGate(request, complexityThreshold = 5) {
// Stage 1: Generate with fast model
const generated = await fetch('http://localhost:5116/api/mock/data', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'generator'
},
body: JSON.stringify(request)
}).then(r => r.json());
// Assess complexity (example: count nested objects)
const complexity = assessComplexity(generated);
// Stage 2: If complex, validate with premium model
if (complexity > complexityThreshold) {
console.log('Complex data detected, validating with premium model...');
const validated = await fetch('http://localhost:5116/api/mock/validate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'validator'
},
body: JSON.stringify({
data: generated,
validationRules: [
"Ensure all dates are valid ISO-8601",
"Verify email formats",
"Check for logical consistency"
]
})
}).then(r => r.json());
return validated;
}
// Simple data passes through
return generated;
}
function assessComplexity(data) {
// Simple heuristic: count nested levels and array sizes
const str = JSON.stringify(data);
const nestedObjects = (str.match(/\{/g) || []).length;
const arrays = (str.match(/\[/g) || []).length;
return nestedObjects + (arrays * 2);
}
Scenario: Generate content, validate, and refine until quality threshold met
async function generateUntilQuality(request, maxIterations = 3) {
let iteration = 0;
let data = null;
let quality = 0;
while (iteration < maxIterations && quality < 0.8) {
iteration++;
// Generate or refine
const backend = iteration === 1 ? 'generator' : 'enricher';
const endpoint = iteration === 1 ? '/generate' : '/refine';
data = await fetch(`http://localhost:5116/api/mock${endpoint}`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': backend
},
body: JSON.stringify({
...(data ? { previous: data } : {}),
...request
})
}).then(r => r.json());
// Assess quality
quality = await assessQuality(data);
console.log(`Iteration ${iteration}: Quality score ${quality}`);
if (quality >= 0.8) {
console.log('Quality threshold met!');
break;
}
}
// Final validation pass with premium model if enabled
if (quality < 0.8) {
console.log('Max iterations reached, final validation pass...');
data = await fetch('http://localhost:5116/api/mock/validate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'validator'
},
body: JSON.stringify(data)
}).then(r => r.json());
}
return data;
}
async function assessQuality(data) {
// Implement quality metrics:
// - Completeness (all required fields present)
// - Validity (formats correct)
// - Realism (values make sense)
// Returns score 0.0-1.0
return 0.85; // Simplified example
}
Challenge: Generate 10,000 realistic customer records for load testing
Solution: Multi-stage pipeline with cost optimization
async function generateTestDataset(count = 10000) {
const batchSize = 100;
const batches = Math.ceil(count / batchSize);
const results = [];
for (let i = 0; i < batches; i++) {
console.log(`Processing batch ${i + 1}/${batches}...`);
// Stage 1: Bulk generation with fast model
const basicData = await fetch('http://localhost:5116/api/mock/customers', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'generator' // Fast model
},
body: JSON.stringify({
count: batchSize,
shape: {
customers: [{
id: "string",
name: "string",
email: "string",
phone: "string"
}]
}
})
}).then(r => r.json());
// Stage 2: Enrich every 10th record with quality model
// (Spot-checking approach)
if (i % 10 === 0) {
const enriched = await fetch('http://localhost:5116/api/mock/customers/enrich', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'enricher' // Quality model
},
body: JSON.stringify(basicData)
}).then(r => r.json());
results.push(enriched);
} else {
results.push(basicData);
}
}
return results.flat();
}
Result: 10,000 records generated in ~5 minutes, 90% fast model (cheap), 10% quality model (enriched)
Challenge: Generate valid and invalid test cases for API endpoint validation
Solution: Parallel generation of positive and negative test cases
async function generateApiTestCases(endpoint, schema) {
const [validCases, edgeCases, invalidCases] = await Promise.all([
// Valid cases: fast model, high volume
fetch('http://localhost:5116/api/mock/testcases/valid', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'generator'
},
body: JSON.stringify({
endpoint,
schema,
count: 20,
type: 'valid'
})
}).then(r => r.json()),
// Edge cases: quality model for tricky scenarios
fetch('http://localhost:5116/api/mock/testcases/edge', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'enricher'
},
body: JSON.stringify({
endpoint,
schema,
count: 10,
type: 'edge',
scenarios: [
'boundary values',
'null/empty fields',
'special characters',
'unicode handling'
]
})
}).then(r => r.json()),
// Invalid cases: premium model for realistic error scenarios
fetch('http://localhost:5116/api/mock/testcases/invalid', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'validator'
},
body: JSON.stringify({
endpoint,
schema,
count: 15,
type: 'invalid',
errorTypes: [
'type mismatch',
'missing required fields',
'constraint violations',
'malformed data'
]
})
}).then(r => r.json())
]);
return {
valid: validCases,
edge: edgeCases,
invalid: invalidCases,
total: validCases.length + edgeCases.length + invalidCases.length
};
}
Challenge: Migrate legacy data to new schema with enhanced quality
Solution: Sequential enhancement pipeline with validation gates
async function migrateLegacyData(legacyRecords) {
const results = {
migrated: [],
failed: [],
warnings: []
};
for (const record of legacyRecords) {
try {
// Stage 1: Transform schema with fast model
let transformed = await fetch('http://localhost:5116/api/mock/transform', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'generator'
},
body: JSON.stringify({
legacyRecord: record,
targetSchema: NEW_SCHEMA
})
}).then(r => r.json());
// Stage 2: Enrich missing fields with quality model
if (hasMissingFields(transformed)) {
transformed = await fetch('http://localhost:5116/api/mock/enrich', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'enricher'
},
body: JSON.stringify(transformed)
}).then(r => r.json());
}
// Stage 3: Validate critical records with premium model
if (record.importance === 'critical') {
const validation = await fetch('http://localhost:5116/api/mock/validate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'validator'
},
body: JSON.stringify({
record: transformed,
rules: CRITICAL_VALIDATION_RULES
})
}).then(r => r.json());
if (!validation.passed) {
results.warnings.push({
originalId: record.id,
issues: validation.issues
});
}
}
results.migrated.push(transformed);
} catch (error) {
results.failed.push({
originalId: record.id,
error: error.message
});
}
}
return results;
}
Use expensive models only where they add value:
// ✅ GOOD: Selective use of premium models
async function smartGeneration(complexity) {
if (complexity === 'simple') {
return generateWith('generator'); // Fast model
} else if (complexity === 'medium') {
return generateWith('enricher'); // Quality model
} else {
return generateWith('validator'); // Premium model
}
}
// ❌ BAD: Always using premium models
async function expensiveGeneration() {
return generateWith('validator'); // Wastes money on simple tasks
}
Use LLMockApi's built-in caching:
{
"shape": {
"$cache": 10,
"users": [{"id": 0, "name": "string"}]
}
}
This primes the cache with variants, avoiding regeneration in subsequent pipeline stages.
Don't blindly pipeline—validate at each stage:
async function pipelineWithGates(data) {
// Stage 1
let result = await stage1(data);
if (!validate(result, STAGE1_RULES)) {
throw new Error('Stage 1 validation failed');
}
// Stage 2
result = await stage2(result);
if (!validate(result, STAGE2_RULES)) {
// Attempt correction
result = await correctWith('enricher', result);
}
return result;
}
Track which backends are used and their performance:
class BackendMonitor {
constructor() {
this.stats = new Map();
}
async callWithTracking(backend, endpoint, body) {
const start = Date.now();
try {
const response = await fetch(endpoint, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': backend
},
body: JSON.stringify(body)
});
const duration = Date.now() - start;
this.recordSuccess(backend, duration);
return await response.json();
} catch (error) {
const duration = Date.now() - start;
this.recordFailure(backend, duration, error);
throw error;
}
}
recordSuccess(backend, duration) {
const stats = this.getStats(backend);
stats.calls++;
stats.successes++;
stats.totalDuration += duration;
stats.avgDuration = stats.totalDuration / stats.calls;
}
recordFailure(backend, duration, error) {
const stats = this.getStats(backend);
stats.calls++;
stats.failures++;
stats.totalDuration += duration;
stats.avgDuration = stats.totalDuration / stats.calls;
stats.lastError = error.message;
}
getStats(backend) {
if (!this.stats.has(backend)) {
this.stats.set(backend, {
calls: 0,
successes: 0,
failures: 0,
totalDuration: 0,
avgDuration: 0,
lastError: null
});
}
return this.stats.get(backend);
}
report() {
console.log('Backend Performance Report:');
for (const [backend, stats] of this.stats) {
console.log(`\n${backend}:`);
console.log(` Calls: ${stats.calls}`);
console.log(` Success Rate: ${(stats.successes / stats.calls * 100).toFixed(1)}%`);
console.log(` Avg Duration: ${stats.avgDuration.toFixed(0)}ms`);
if (stats.lastError) {
console.log(` Last Error: ${stats.lastError}`);
}
}
}
}
// Usage
const monitor = new BackendMonitor();
const result = await monitor.callWithTracking('generator', 'http://...', data);
monitor.report();
Always have a backup plan:
async function generateWithFallback(data) {
// Try primary backend
try {
return await fetch('http://localhost:5116/api/mock/generate', {
method: 'POST',
headers: { 'X-LLM-Backend': 'enricher' },
body: JSON.stringify(data)
}).then(r => r.json());
} catch (error) {
console.warn('Primary backend failed, falling back to generator');
// Fallback to faster model
return await fetch('http://localhost:5116/api/mock/generate', {
method: 'POST',
headers: { 'X-LLM-Backend': 'generator' },
body: JSON.stringify(data)
}).then(r => r.json());
}
}
Balance latency vs. throughput:
// For sequential pipelines: small batches for lower latency
async function sequentialPipeline(items) {
const batchSize = 10; // Small batches
for (let i = 0; i < items.length; i += batchSize) {
const batch = items.slice(i, i + batchSize);
await processBatch(batch); // Process and continue
}
}
// For parallel pipelines: larger batches for higher throughput
async function parallelPipeline(items) {
const batchSize = 50; // Larger batches
const batches = [];
for (let i = 0; i < items.length; i += batchSize) {
const batch = items.slice(i, i + batchSize);
batches.push(processBatch(batch));
}
await Promise.all(batches); // All at once
}
Understanding the trade-offs between speed, quality, and cost is crucial for designing effective multi-LLM systems.
graph LR
subgraph "Performance Triangle"
A[⚡ Speed<br/>Low Latency]
B[💎 Quality<br/>High Accuracy]
C[💰 Cost<br/>Low Expense]
A ---|Can't have<br/>all three| B
B ---|Pick two| C
C ---|at once| A
end
subgraph "Pattern Positioning"
D[Single Fast Model<br/>⚡⚡⚡ 💰<br/>💎💎]
E[2-Stage Pipeline<br/>⚡⚡ 💰💰<br/>💎💎💎]
F[3-Stage Pipeline<br/>⚡ 💰💰💰<br/>💎💎💎💎💎]
G[Parallel 3-Model<br/>⚡⚡ 💰💰💰<br/>💎💎💎💎]
end
style A stroke:#d4edda
style B stroke:#fff3cd
style C stroke:#f8d7da
style D stroke:#cce5ff
style E stroke:#d1ecf1
style F stroke:#d4edda
style G stroke:#fff3cd
Detailed Breakdown:
| Pattern | Latency | Quality | Cost | Best For |
|---|---|---|---|---|
| Single fast model | ⚡⚡⚡ Low (100-300ms) | 💎💎 Medium | 💰 Low ($0.0001/request) | High volume, simple data |
| Sequential 2-stage | ⚡⚡ Medium (500ms-1s) | 💎💎💎 High | 💰💰 Medium ($0.0003/request) | Balanced quality/speed |
| Sequential 3-stage | ⚡ High (1-2s) | 💎💎💎💎💎 Very High | 💰💰💰 High ($0.001/request) | Critical data quality |
| Parallel 3-model | ⚡⚡ Medium (300-600ms) | 💎💎💎💎 High | 💰💰💰 High ($0.001/request) | Comprehensive coverage |
Real-World Cost Analysis:
graph TD
A[10,000 requests] --> B{Which Pattern?}
B --> C[Single Model<br/>Gemma 3]
B --> D[2-Stage Pipeline<br/>Gemma 3 → Mistral]
B --> E[3-Stage Pipeline<br/>Gemma 3 → Mistral → GPT-4]
B --> F[Parallel 3-Model<br/>Gemma + Mistral + Mistral]
C --> C1[Total Cost: ~$1<br/>Total Time: ~30 min<br/>Quality: 6/10]
D --> D1[Total Cost: ~$3<br/>Total Time: ~1.5 hrs<br/>Quality: 8/10]
E --> E1[Total Cost: ~$10<br/>Total Time: ~3 hrs<br/>Quality: 10/10]
F --> F1[Total Cost: ~$10<br/>Total Time: ~1 hr<br/>Quality: 9/10]
style C1 stroke:#d4edda
style D1 stroke:#fff3cd
style E1 stroke:#f8d7da
style F1 stroke:#d1ecf1
Key Insights:
Symptoms: Multi-stage pipeline exceeds timeout
Solutions:
MaxTokens in configurationTimeoutSeconds for complex pipelinesSymptoms: Each stage produces conflicting data
Solutions:
Symptoms: OpenAI/Anthropic bills are high
Solutions:
Symptoms: Always using same backend despite headers
Solutions:
"Enabled": true)X-LLM-Backend: backend-nameRoute based on request characteristics:
function selectBackend(request) {
const complexity = analyzeComplexity(request);
const budget = request.budget || 'low';
if (budget === 'unlimited' && complexity > 8) {
return 'validator'; // Premium model
} else if (complexity > 5) {
return 'enricher'; // Quality model
} else {
return 'generator'; // Fast model
}
}
async function smartGenerate(request) {
const backend = selectBackend(request);
return await fetch('http://localhost:5116/api/mock/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': backend
},
body: JSON.stringify(request)
}).then(r => r.json());
}
Use multiple models and vote on best result:
async function generateWithConsensus(request, backends = ['generator', 'enricher']) {
// Generate with multiple backends
const results = await Promise.all(
backends.map(backend =>
fetch('http://localhost:5116/api/mock/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': backend
},
body: JSON.stringify(request)
}).then(r => r.json())
)
);
// Score each result
const scores = results.map(result => ({
result,
score: scoreQuality(result)
}));
// Return highest scoring result
scores.sort((a, b) => b.score - a.score);
return scores[0].result;
}
Automatically detect and fix quality issues:
async function selfHealingPipeline(data, maxAttempts = 3) {
let attempt = 0;
let result = data;
while (attempt < maxAttempts) {
attempt++;
// Process with current stage
result = await processStage(result, attempt);
// Validate result
const issues = validateResult(result);
if (issues.length === 0) {
break; // Success!
}
console.log(`Attempt ${attempt}: Found ${issues.length} issues, healing...`);
// Use quality model to fix issues
result = await fetch('http://localhost:5116/api/mock/heal', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'X-LLM-Backend': 'enricher'
},
body: JSON.stringify({
data: result,
issues: issues
})
}).then(r => r.json());
}
return result;
}
The Next Evolution: Some problems require not just pattern matching, but actual computation. Code-capable LLMs can write and execute code to solve problems that pure language models struggle with.
graph TD
A[Request] --> B{Complexity Analyzer}
B -->|Pattern matching problem| C[Standard LLM Pipeline]
B -->|Computational problem| D[Code-Capable LLM]
B -->|Hybrid problem| E[Combined Approach]
D --> F[Generate Code]
F --> G[Execute & Validate]
G --> H{Correct?}
H -->|Yes| I[Use Result]
H -->|No| J[Fallback Strategy]
J --> K[Simpler Algorithm]
J --> L[Different Model]
J --> M[Human Escalation]
C --> N[Output]
I --> N
K --> N
L --> N
style D stroke:#fff3cd
style G stroke:#e1f5ff
style N stroke:#d4edda
When Code Outperforms Language:
| Problem Type | Best Approach | Why |
|---|---|---|
| Calculate exact statistics | Code execution | Precision matters |
| Generate large datasets | LLM creativity | Variety matters |
| Validate complex rules | Code logic | Determinism matters |
| Create realistic patterns | LLM intuition | Naturalness matters |
| Mathematical proof | Code verification | Correctness matters |
Theoretical Ideal: A system that recognizes when to use symbolic reasoning (code) vs. statistical reasoning (LLM) and seamlessly switches between them.
Example: Statistical Analysis Request
User Request: "Generate 1000 user records where ages follow a normal distribution
with mean 35 and standard deviation 12"
System Analysis:
- Keyword detection: "normal distribution", "mean", "standard deviation"
- Classification: COMPUTATIONAL_PROBLEM
- Best approach: CODE_GENERATION
System Decision Tree:
├─ Pattern Matching? NO (requires precise math)
├─ Statistical Computation? YES
└─ Route to: Code-Capable LLM
Code-Capable LLM (GPT-4) generates:
import numpy as np
import json
# Generate ages from normal distribution
np.random.seed(42)
ages = np.random.normal(loc=35, std=12, size=1000)
# Clip to realistic range
ages = np.clip(ages, 18, 100).astype(int)
# Verify distribution
mean_actual = np.mean(ages)
std_actual = np.std(ages)
print(f"Generated distribution: mean={mean_actual:.2f}, std={std_actual:.2f}")
print(f"Target distribution: mean=35.00, std=12.00")
# Generate complete user records
users = []
for age in ages:
users.append({
"age": int(age),
"id": len(users) + 1,
# LLM fills in realistic details based on age
})
print(json.dumps(users[:5], indent=2)) # Show first 5
System executes code → Validates output → Passes to Standard LLM for enrichment
Standard LLM (Mistral) adds realistic details:
- Names appropriate for age cohort
- Occupations typical for life stage
- Interests correlated with age
Final output: 1000 statistically valid, realistically detailed user records
Cost: $0.002 (code execution) + $0.008 (enrichment) = $0.01 total
Time: 300ms (code) + 2s (enrichment) = 2.3s total
Why This Works:
Example: Complex Validation Logic
User Request: "Generate enterprise customer data where:
- Annual revenue must be log-normally distributed
- Company size correlates with revenue (R² > 0.8)
- Industry distribution matches real-world ratios
- Locations follow population density"
System Analysis:
- Multiple mathematical constraints
- Cross-field correlations
- Real-world distributions
Classification: HYBRID_PROBLEM
├─ Mathematical constraints → CODE
├─ Realistic details → LLM
└─ Orchestration → PIPELINE
Stage 1: Code-Capable LLM generates constraint solver
import numpy as np
from scipy import stats
class EnterpriseDataGenerator:
def __init__(self, n_samples=1000):
self.n = n_samples
self.rng = np.random.default_rng(42)
def generate_revenue(self):
"""Log-normal distribution for revenue"""
mu, sigma = 15, 1.5 # ln($) parameters
revenue = self.rng.lognormal(mu, sigma, self.n)
return np.clip(revenue, 1e5, 1e10) # $100K to $10B
def generate_company_size(self, revenue):
"""Size correlated with revenue (R² > 0.8)"""
# Strong correlation with some noise
base_size = np.log10(revenue) * 50
noise = self.rng.normal(0, 20, self.n)
size = base_size + noise
return np.clip(size, 10, 50000).astype(int)
def validate_correlation(self, revenue, size):
"""Ensure R² > 0.8"""
r_squared = np.corrcoef(np.log(revenue), np.log(size))[0, 1] ** 2
assert r_squared > 0.8, f"R²={r_squared:.3f} < 0.8"
return r_squared
def generate(self):
revenue = self.generate_revenue()
size = self.generate_company_size(revenue)
r_sq = self.validate_correlation(revenue, size)
return {
'revenue': revenue.tolist(),
'size': size.tolist(),
'validation': {'r_squared': r_sq}
}
# Execute and validate
gen = EnterpriseDataGenerator(1000)
data = gen.generate()
print(f"✓ Correlation validated: R²={data['validation']['r_squared']:.3f}")
Stage 2: Standard LLM enriches with realistic details
Input: { "revenue": 2500000, "size": 85 }
Output: {
"revenue": 2500000,
"size": 85,
"company": "TechFlow Solutions",
"industry": "B2B SaaS",
"founded": 2015,
"headquarters": "Austin, TX",
"growth_rate": 0.28,
"customers": 450,
"description": "Mid-market customer data platform..."
}
Stage 3: Validator checks all constraints
✓ Log-normal distribution: KS-test p=0.42
✓ Correlation: R²=0.84
✓ Industry ratios: χ²-test p=0.61
✓ Location density: matches census data
The Power of Hybrid Reasoning:
| Aspect | Approach | Why |
|---|---|---|
| Statistical constraints | Code | Exact, verifiable |
| Realistic company names | LLM | Creative, natural |
| Industry correlations | Code | Data-driven |
| Narrative descriptions | LLM | Contextual, varied |
| Cross-validation | Code | Deterministic |
| Edge case handling | LLM | Flexible, adaptive |
The Self-Optimization Revelation:
After analyzing thousands of requests, the system discovers:
graph LR
subgraph "Initial Design (Week 1)"
A1[Request] --> B1[Complexity Analyzer]
B1 --> C1[Route to Backend]
C1 --> D1[Generate Data]
D1 --> E1[Validate]
E1 --> F1[Enrich]
F1 --> G1[Final Check]
G1 --> H1[Output]
end
subgraph "Optimized Design (Week 12)"
A2[Request] --> B2{Contains<br/>Math/Stats?}
B2 -->|Yes| C2[Code-Capable LLM]
B2 -->|No| D2[Standard LLM]
C2 --> E2[Execute Code]
E2 --> F2[Output]
D2 --> F2
end
style A1 stroke:#f8d7da
style H1 stroke:#f8d7da
style F2 stroke:#d4edda
Key Learning:
BEFORE OPTIMIZATION:
Request: "Generate 1000 users with normal age distribution"
Path: Analyzer → Router → Generator → Validator → Enricher → QA
Time: 8.5 seconds
Cost: $0.015
Stages: 6
AFTER OPTIMIZATION:
Request: "Generate 1000 users with normal age distribution"
Path: Code-capable LLM → Execute
Time: 1.2 seconds
Cost: $0.003
Stages: 1
REDUCTION: 85% faster, 80% cheaper, 83% fewer stages
INSIGHT: For statistical problems, code is optimal path
The Graph Optimizes Itself Away:
graph TD
A[Week 1: Complex Graph] --> B[Track Performance]
B --> C{Analysis:<br/>What actually<br/>adds value?}
C -->|"Statistical requests"| D["Discovery:<br/>LLM + Code = 95% success<br/>Multi-stage = 96% success<br/>Cost: 5x higher<br/>Time: 7x slower"]
D --> E["Optimization:<br/>Remove unnecessary stages<br/>Direct route: LLM → Code"]
E --> F[Week 12: Simplified Graph]
F --> G["New pattern:<br/>IF statistical_keywords<br/>THEN code_capable_llm<br/>ELSE standard_llm"]
G --> H[Self-Optimization Complete]
style A stroke:#f8d7da
style E stroke:#fff3cd
style F stroke:#d4edda
style H stroke:#e1f5ff
Real Example of Graph Reduction:
ORIGINAL DECISION GRAPH (256 possible paths):
├─ Complexity: Low/Med/High (3 branches)
│ ├─ Quality: Standard/Premium (2 branches)
│ │ ├─ Speed: Fast/Balanced/Slow (3 branches)
│ │ │ ├─ Backend: A/B/C/D (4 branches)
│ │ │ │ └─ Validation: Yes/No (2 branches)
│ Total: 3 × 2 × 3 × 4 × 2 = 144 paths
OPTIMIZED GRAPH (4 paths):
├─ Contains math/stats? YES → Code-capable LLM → Execute
├─ Contains math/stats? NO
│ ├─ Simple? YES → Fast LLM
│ ├─ Simple? NO → Quality LLM
│ └─ Complex? YES → Multi-stage
Total: 4 paths
Reduction: 97.2% fewer decision points
The Beautiful Simplicity:
The system learned that most complexity adds no value:
This is the essence of intelligence: Knowing when complexity helps and when it hurts.
RAG-Enhanced Solution Library:
The system doesn't just optimize routing—it remembers successful solutions and adapts them for similar requests.
graph TB
A[New Request] --> B[Embedding Model]
B --> C[Vector Search:<br/>Find similar<br/>past requests]
C --> D{Similarity Score}
D -->|> 0.95<br/>Nearly Identical| E[Retrieve Solution<br/>Minimal adaptation needed]
D -->|0.80-0.95<br/>Very Similar| F[Retrieve Solution<br/>Minor modifications]
D -->|0.60-0.80<br/>Somewhat Similar| G[Retrieve Pattern<br/>Significant adaptation]
D -->|< 0.60<br/>Novel Request| H[Full Generation<br/>Store new pattern]
E --> I[LLM: Adapt solution]
F --> I
G --> I
H --> J[LLM: Generate from scratch]
I --> K[Execute & Validate]
J --> K
K --> L{Success?}
L -->|Yes| M[Store in RAG:<br/>- Request embedding<br/>- Solution code<br/>- Performance metrics]
L -->|No| N[Fallback Strategy]
M --> O[Future requests<br/>benefit from this learning]
style D stroke:#fff3cd
style M stroke:#d4edda
style O stroke:#e1f5ff
Example: Building a Solution Library Over Time
WEEK 1: First Request
Request: "Generate 1000 users with normal age distribution"
System: No similar patterns found
Action: Generate code from scratch (2.5s, $0.005)
Store: ✓ Request embedding + Solution code + Metrics
WEEK 2: Similar Request
Request: "Generate 500 employees with normal age distribution"
Similarity: 0.92 (very similar!)
System: Retrieves previous solution
Action: Adapt code (n=1000 → n=500) (0.3s, $0.001)
Store: ✓ Variant with higher success rate
WEEK 4: Related Request
Request: "Generate 2000 customers with normal salary distribution"
Similarity: 0.78 (somewhat similar)
System: Retrieves pattern (normal distribution generation)
Action: Adapt (age → salary, different scale) (0.8s, $0.002)
Store: ✓ New pattern: normal_distribution[any_field]
WEEK 12: Novel Variation
Request: "Generate users with bimodal age distribution"
Similarity: 0.65 (shares domain but different distribution)
System: Retrieves pattern + detects difference
Action: Modify algorithm (normal → bimodal) (1.2s, $0.003)
Store: ✓ New pattern: bimodal_distribution
WEEK 24: Library Complete
Stored Patterns: 47 distributions, 23 correlations, 15 validators
Average retrieval: 0.4s vs 2.1s generation
Cost savings: 75% reduction for similar requests
Adaptive Modification Based on Similarity:
graph LR
subgraph "Similarity = 0.95"
A1[Request: 1000 → 500 users] --> B1[Simple Parameter<br/>Adjustment]
B1 --> C1[Code: n=1000<br/>→ n=500]
C1 --> D1[Time: 0.2s<br/>Cost: $0.0005]
end
subgraph "Similarity = 0.75"
A2[Request: Age → Salary<br/>distribution] --> B2[Field Swap<br/>+ Scale Adjustment]
B2 --> C2[Code: Generate ages<br/>→ Generate salaries<br/>Scale: 18-100<br/>→ 20K-200K]
C2 --> D2[Time: 0.6s<br/>Cost: $0.001]
end
subgraph "Similarity = 0.55"
A3[Request: Normal<br/>→ Bimodal] --> B3[Algorithm<br/>Redesign]
B3 --> C3[Code: np.normal()<br/>→ Two normals merged]
C3 --> D3[Time: 1.5s<br/>Cost: $0.003]
end
style D1 stroke:#d4edda
style D2 stroke:#fff3cd
style D3 stroke:#f8d7da
The RAG Modification Strategy:
| Similarity | Modification Type | Example | LLM Prompt |
|---|---|---|---|
| 0.95-1.00 | Parameter tuning | Change n=1000 to n=500 | "Adjust parameters: " |
| 0.85-0.95 | Field substitution | Age → Salary | "Replace field with , adjust ranges" |
| 0.70-0.85 | Logic adaptation | Normal → Uniform | "Modify distribution from to " |
| 0.60-0.70 | Pattern combination | Merge two patterns | "Combine patterns and for " |
| < 0.60 | Full generation | Novel request | "Generate solution from scratch for " |
The Learning Accelerates:
MONTH 1:
New requests: 100
RAG hits: 12 (12%)
Avg generation time: 2.1s
Avg cost: $0.0045
MONTH 3:
New requests: 100
RAG hits: 45 (45%)
Avg generation time: 1.2s
Avg cost: $0.0025
MONTH 6:
New requests: 100
RAG hits: 73 (73%)
Avg generation time: 0.6s
Avg cost: $0.0012
MONTH 12:
New requests: 100
RAG hits: 89 (89%)
Avg generation time: 0.3s
Avg cost: $0.0006
INSIGHT: System gets faster and cheaper as it learns
Graph Modifications Based on Request Distance:
The decision graph itself adapts based on how similar the request is to known patterns:
graph TD
A[Request] --> B[Vector Search]
B --> C{Best Match<br/>Similarity?}
C -->|> 0.9| D[SIMPLE PATH:<br/>Retrieve → Tweak → Execute]
C -->|0.7-0.9| E[MODERATE PATH:<br/>Retrieve → Adapt → Validate → Execute]
C -->|0.5-0.7| F[COMPLEX PATH:<br/>Retrieve → Redesign → Test → Execute]
C -->|< 0.5| G[FULL PATH:<br/>Analyze → Generate → Validate → Test → Execute]
D --> H[Node Count: 3]
E --> I[Node Count: 4]
F --> J[Node Count: 5]
G --> K[Node Count: 6]
style D stroke:#d4edda
style E stroke:#fff3cd
style F stroke:#ffe1e1
style G stroke:#f8d7da
The Meta-Intelligence:
The system learns:
The Ultimate Optimization:
NAIVE SYSTEM:
Every request → Full LLM generation → New code
Graph: Always maximum complexity
Cost: High and constant
OPTIMIZED SYSTEM:
Similar request → Retrieve + tweak → Adapted code
Graph: Complexity scales with novelty
Cost: Decreases over time as library grows
RESULT: The more you use it, the smarter and cheaper it gets
The Self-Learning Backend: Instead of static weights, the system learns which backends perform best for different request types over time.
graph TB
subgraph "Learning Loop"
A[New Request] --> B[Request Classifier]
B --> C{Request Type?}
C -->|Type A| D[Historical Performance:<br/>Gemma: 85%<br/>Mistral: 92%<br/>GPT-4: 94%]
C -->|Type B| E[Historical Performance:<br/>Gemma: 78%<br/>Mistral: 80%<br/>GPT-4: 79%]
C -->|Type C| F[Historical Performance:<br/>Gemma: 91%<br/>Mistral: 88%<br/>GPT-4: 90%]
D --> G[Route to Mistral<br/>92% success rate]
E --> H[Route to Mistral<br/>Best cost/quality]
F --> I[Route to Gemma<br/>Fastest, good enough]
G --> J[Execute & Measure]
H --> J
I --> J
J --> K[Update Performance Stats]
K --> L[Adjust Future Routing]
L --> A
end
style B stroke:#fff3cd
style J stroke:#e1f5ff
style K stroke:#ffe1e1
style L stroke:#d4edda
Key Insight: The system doesn't just route—it learns to route better over time.
Theoretical Weighting Formula:
Backend Score = (Quality × Quality_Weight) / (Cost × Cost_Weight × Latency × Latency_Weight)
Where weights adjust based on:
- Recent success rate
- Domain-specific performance
- Time of day / load patterns
- Cost constraints
- User satisfaction signals
The Learning Curve:
graph LR
subgraph "Week 1: Naive Routing"
A1[All requests → GPT-4] --> A2[High quality<br/>High cost<br/>$10,000/month]
end
subgraph "Week 4: Pattern Recognition"
B1[Simple → Gemma<br/>Medium → Mistral<br/>Complex → GPT-4] --> B2[Good quality<br/>Medium cost<br/>$3,000/month]
end
subgraph "Week 12: Domain Learning"
C1[Type A → Gemma<br/>Type B → Mistral<br/>Type C → GPT-4<br/>Type D → Gemma] --> C2[Best quality<br/>Optimal cost<br/>$1,200/month]
end
subgraph "Week 24: Self-Optimization"
D1[95% → Gemma<br/>4% → Mistral<br/>1% → GPT-4] --> D2[Same quality<br/>Minimal cost<br/>$800/month]
end
style A2 stroke:#f8d7da
style B2 stroke:#fff3cd
style C2 stroke:#d1ecf1
style D2 stroke:#d4edda
The Profound Discovery: A truly intelligent system often discovers that the simplest solution is best.
The Journey:
graph TD
A[Start: Complex Multi-LLM<br/>Decision Engine] --> B[Collect Performance Data]
© 2025 Scott Galloway — Unlicense — All content and source code on this site is free to use, copy, modify, and sell.